Aug 26-PreCalculus

- Calculator check
- Starter \#3 and Factor Quiz
- Homework Questions
- 1.2 Part 2 Continuity, Inc/Dec/ Extrema, Bounded
- Pass back papers

HW Pg 102 \# $21-46$

Aug 25-3:37 PM

Homework Questions...
\#12

$$
\frac{\frac{1}{x}}{\text { Domain }}+\frac{5}{x-3}
$$

$$
\begin{array}{cc}
x \neq 0 & x-3=0 \\
x \neq 3 \\
(-\infty, 0) \cup(0,3) \cup(3, \infty)
\end{array}
$$

Aug 25-3:39 PM
\#11 $\frac{3 x-1}{(x+3)(x-1)}$

$$
\begin{aligned}
& D:(-\infty,-3) \cup(-3,1) \cup(1, \infty)
\end{aligned}
$$

Grab a quiz from front table
Starter \#3 Domain and Range
Use the back of your QUIZ paper. Write starter \#3 on the back.

Use a calculator to help sketch the graph then find the Domain and Range of the functions.

$$
f(x)=\sqrt{x+2} \quad f(x)=\frac{x+1}{x-2}
$$

Aug 30-12:52 PM
\#

Aug 30-1:37 PM
1.2 Part 2 Pg. 90-95

Continuity
Increasing/Decreasing
Extrema- Maximum/Minimum
Boundedness

Continuity: a function is continuous at a point if the graph does not come apart at that point.

Continuous at all x :

Removable Discontinuity: the graph is continuous everywhere except for a hole where $x=a$. Can be patched by redefining $f(a)$ to plug

Aug 26-12:12 PM

Identifying Points of Discontinuity

Which of the following are discontiuous at $x=2$? Any removable?

Aug 26-12:26 PM

Aug 30-1:58 PM

Jump Discontinuity: a jump in function values that makes the gap impossible to plug with a single point.
$a=-1$

Infinite Discontinuity: an x value ($x=a$) that is undefined for all y values of the function.

Aug 26-12:19 PM

Increasing and Decreasing Functions

Increasing: if for any two points in the interval a positive change in x results in a positive change in $f(x)$.

Decreasing: if for any two points in the interval a positive change in x results in a negative change in $f(x)$.

Constant: if for any two points in the interval a positive change in x results in a zero change in $f(x)$.

Aug 26-12:28 PM

Aug 30-2:00 PM

Boundedness

Bounded: if it is bounded both above and below.

Bounded Below: if there is some number b that is less than or equal to every number in the range of f. Any such number b is called a lower bound of f. Valley \sim
Bounded Above: if there is some number B that is greater than or equal to every number in the range of f. Any such number B is called and upper bound of f. mountain $\sim \sim$

Aug 26-12:33 PM

Aug 30-2:06 PM

Extrema:Maximum and Minimum

Maximum: is a value (c) that is greater than or equal to all the range values of f on some open interval containing the value (c).
Looks like a mountain
Minimum: is a value(c) that is less than or equal to all range values of f on some open interval containing the value (c).
Looks like a valley.
Exceptions: Square root, jump discontinuity

Aug 30-2:05 PM

Aug 26-12:54 PM

Calculator Finding extrema(max/min)

$\max (0,10)$
*21 $\frac{3}{x}$ discontinuous at $x=0$ non removable
\#22

Continuous at $x=0$ removable
\#29

$$
\begin{aligned}
& \text { dec. } \\
& (-\infty,-2) \\
& \text { inc. } \\
& (-2, \infty)
\end{aligned}
$$

Aug 30-2:18 PM

