Starter
Homework Questions
Calendar Math
1.4 Binomial Theorem
HW 1.4 Binomial Theorem Worksheet

Aug 31-2:46 PM

Sep 1-9:57 AM

Binomial Theorem: a formula for finding any power of a binomial without multiplying at

Pascal's Triangle: is a triangle of numbers where each number is the two numbers above it added together (except for the edges, which are all "1").
$x^{3}-36 x$

Sep 1-9:51 AM

Homework Questions...

Aug 31-2:46 PM
\square

$$
\text { 4) } 14641
$$

$$
\text { 5) }(510105)
$$

Aug 31-2:09 PM

Sep 1-10:13 AM
Homework
5) $\left(2 n^{4}-1\right)^{5}$
$a^{0} 2 n^{4}$
$a^{5}\left(2 n^{6}\right)^{5}=32 n^{20}$
$5 a^{4} b^{6} 5\left(2 n^{4}\right)^{4} \cdot(-1)=5\left(16 n^{16}\right)(-1)=-80 n^{16}$
$10 a^{3} b^{2} \cdot 10\left(2 n^{4}\right)^{3}(-1)^{2}=10\left(8 n^{12}\right)=80 n^{12}$
$10 a^{2} b^{3} 810\left(2 n^{4}\right)^{2}(-1)^{3}=-10\left(4 n^{8}\right)=-40 n^{8}$
$5 a b^{40} 5\left(2 n^{4}\right)(-1)^{4}=5\left(2 n^{4}\right)=10 n^{4}$
$b^{5} \cdot(-1)^{5}=-1$
$32 n^{20}-80 n^{16}+80 n^{12}-40 n^{8}+10 n^{4}-1$

Aug 31-2:51 PM

Sep 1-10:42 AM

Aug 31-2:50 PM

Sep 1-10:38 AM

Sep 1-10:45 AM

