9.7 Equations of Circles

Write the equation for the circle given the following.

1. center (0, 0) radius 3	2. center (0, 0) radius 2
3. center (6, -8) diameter 10	4. center (0, 0) radius 4
5. center (1,0) radius 3	6. center (3, 0) radius 2
9. center at (0, 0) that contains the point (2, 5)	11. a circle whose diameter has endpoints (-3, 0) and (3, 0)
10. center at $(0, 0)$ that contains the point $(-3, 5)$	12. a circle whose diameter has endpoints (4, 6) and (-2, 6)

Given the standard form of a circle determine the center and the radius of each circle.

13. $x^2 + y^2 = 16$ **14.** $x^2 + y^2 = 36$ **15.** $x^2 + y^2 = 1$

16.
$$(x-2)^2 + (y+2)^2 = 9$$
 17. $x^2 + (y-6)^2 = 64$ **18.** $(x+1)^2 + y^2 = 1$

19.
$$(x-5)^2 + (y+8)^2 = 81$$
 20. $(x+3)^2 + (y+6)^2 = 6$ **21.** $(x-1)^2 + (y+3)^2 = 16$

25. $x^2 + y^2 - x + 2y + 1 = 0$

Complete the square to find the center and radius of a circle given the equation.

22.
$$x^2 + y^2 - 2x - 4y - 4 = 0$$

23. $x^2 + y^2 + 4x + 2y - 20 = 0$

9.8 Proving Geometrical Theorems Algebraically

1.	Prove that quad	l ABC	CD is a	par	allelogr	am
giv	en vertices A(-	1, 3),	B(2, 1), (C(9, 2),	
and	l D(6,4)					

24. $x^2 + y^2 - 6x + 2y + 9 = 0$

3. Prove that ABCD is a rhombus given the vertices A(0, 3), B(3, 0), C(0, -3), and D(-3, 0)

2. Prove that quad ABCD is an isosceles trapezoid given the vertices A(-1, 1), B(-5, -3), C(-4, -10), and D(6,0)

4. Prove that the point (2, -5) lies on the circle with radius 2 and center (2, -3).

5. Given a circle with center at the origin determine whether or not the points $(1,\sqrt{3})$ and (1,2) lie on the same circle.