\qquad
\qquad
\qquad

9.7 Equations of Circles

Write the equation for the circle given the following.

1. center $(0,0)$ radius 3
2. center $(6,-8)$ diameter 10
3. center $(1,0)$ radius 3
4. center at $(0,0)$ that contains the point $(2,5)$
5. center $(0,0)$ radius 4
6. center $(0,0)$ radius 2
7. a circle whose diameter has endpoints
$(-3,0)$ and $(3,0)$
8. center $(3,0)$ radius 2
9. center at $(0,0)$ that contains the point $(-3,5)$

Given the standard form of a circle determine the center and the radius of each circle.
13. $x^{2}+y^{2}=16$
14. $x^{2}+y^{2}=36$
15. $x^{2}+y^{2}=1$
16. $(x-2)^{2}+(y+2)^{2}=9$
17. $x^{2}+(y-6)^{2}=64$
18. $(x+1)^{2}+y^{2}=1$
19. $(x-5)^{2}+(y+8)^{2}=81$
20. $(x+3)^{2}+(y+6)^{2}=6$
21. $(x-1)^{2}+(y+3)^{2}=16$
\qquad Date \qquad
\qquad

Complete the square to find the center and radius of a circle given the equation.
22. $x^{2}+y^{2}-2 x-4 y-4=0$
23. $x^{2}+y^{2}+4 x+2 y-20=0$
24. $x^{2}+y^{2}-6 x+2 y+9=0$
25. $x^{2}+y^{2}-x+2 y+1=0$

9.8 Proving Geometrical Theorems Algebraically

1. Prove that quad ABCD is a parallelogram given vertices $\mathrm{A}(-1,3), \mathrm{B}(2,1), \mathrm{C}(9,2)$, and $\mathrm{D}(6,4)$
2. Prove that $A B C D$ is a rhombus given the vertices $\mathrm{A}(0,3), \mathrm{B}(3,0), \mathrm{C}(0,-3)$, and $\mathrm{D}(-$ 3, 0)
3. Prove that quad $A B C D$ is an isosceles trapezoid given the vertices $\mathrm{A}(-1,1), \mathrm{B}(-5$, 3), $C(-4,-10)$, and $D(6,0)$
4. Prove that the point $(2,-5)$ lies on the circle with radius 2 and center ($2,-3$).
5. Given a circle with center at the origin determine whether or not the points $(1, \sqrt{3})$ and $(1,2)$ lie on the same circle.
